

International Journal of Learning and Teaching, Vol. 10, No. 2, 2024

261doi: 10.18178/ijlt.10.2.261-269

A Proposal of Code Writing Problem for C

Programming Learning Assistant System

Htoo Htoo Sandi Kyaw1,*, Chai Xu Min1, Keiichi Kaneko1, Soe Thandar Aung2, Nobuo Funabiki2, and

Annisa Anggun Puspitasari3

1 Department of Computer and Information Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
2 Department of Information and Communication Systems, Okayama University, Okayama, Japan

3 Department of Intelligent Mechatronics Engineering, Sejong University, Seoul, South Korea

Email: htoohtoosk@go.tuat.ac.jp (H.H.S.K.); s216754t@st.go.tuat.ac.jp (C.X.M.); k1kaneko@cc.tuat.ac.jp (K.K.);

soethandar@s.okayama-u.ac.jp (S.T.A.); funabiki@okayama-u.ac.jp (N.F.); annisanggun@gmail.com (A.A.P.)

*Corresponding author

Abstract—C programming has been a fundamental subject

for a lot of university students studying programming

languages, algorithms, and computer architecture. To

enhance C programming education in schools, we have

developed the C Programming Learning Assistant System

(CPLAS) which provides a variety of programming

assignments to cover different learning stages. The

programming assignments offered by CPLAS allow the

students to practice writing partial source code to learn

grammar, code reading, and code debugging skills. However,

the current assignments offered by CPLAS do not cover

students to practice writing the whole C source code from

scratch. Therefore, in this paper, we propose the Code

Writing Problem (CWP) for students to write the C source

code from scratch. In a CWP instance, a problem statement,

an input list, and an expected output are given to the

students. The students need to write the C source code from

scratch by referring to the given information. The answer

codes are marked through 1) compiling test, 2) execution

test, and 3) output test. To avoid cheating by students, we

use the random input generation method for each data type.

To evaluate the proposal, we generated and assigned 11

CWP instances to the students. From their solution results,

10 out of 11 CWP instances achieved over 78% correct

answer rate, and the feedback from the students confirmed

the validity of the proposal.

Keywords—C programming learning assistant system, C

Programming Learning Assistant System (CPLAS), code

writing problem, CWP instance

I. INTRODUCTION

C programming maintains its pivotal status as a

foundational programming language. Across global

academic institutions, numerous universities incorporate

C programming, along with its object-oriented extension

C++, as the inaugural computer programming language.

This practice extends beyond IT departments and extends

to diverse fields such as mechanical engineering and

electrical engineering.

Furthermore, within IT departments, the study of C

programming frequently coincides with computer

Manuscript received June 20, 2023; revised August 10, 2023; accepted

October 30, 2023; published April 11, 2024.

architecture courses. This dual approach stems from the

necessity to comprehend memory and register access by

programs, ensuring efficient programming within the

context of the specific computer architecture.

Consequently, despite its longevity since its inception, C

retains its position as the second most prominent

programming language due to its enduring relevance and

widespread applicability [1].

Therefore, to assist C programming education for

students, C Programming Learning Assistant System

(CPLAS) has been developed as a self-study tool for

students. CPLAS provides different programming

assignments to cover different levels of students.

Presently, CPLAS provides simple exercise problems,

such as Grammar-Concept Understanding Problem

(GUP) [2], Value Trace Problem (VTP) [3], Element Fill-

in-Blank Problem (EFP) [4], Code Completion Problem

(CCP) [5] and Phrase Fill-in-blank Problem (PFP) [6],

listed here from easiest to hardest, respectively.

In CPLAS, firstly, a GUP instance consists of a source

code and a set of questions describing the definitions of

important elements in the source code. By solving GUP

instances, students are expected to master the basic

grammar concepts of C programs. Secondly, a VTP

instance asks students to trace the value of a variable to

make them master code tracing. Thirdly, an EFP instance

consists of a source code with blank elements where the

students are asked to fill in the correct answer for each

blank aiming to improve their code reading skills.

Fourthly, a CCP instance asks for the completion of the

given source code by filling in the missing elements. By

solving CCP instances, students can master the code

debugging ability. Finally, a PFP instance asks students

to fill in the phrase in the source code. This PFP instance

allows the students to practice writing the partial source

code.

The assignment problems mentioned above are mainly

focused on grammar, code reading, and code debugging

study. To master the C programming language, students

need to write the source code from scratch and all the

current programming assignments offered by CPLAS do

not cover acquiring the code writing skills. The

programming assignment which allows the students to

practice writing the source code from scratch after

studying the grammar, code reading, and code debugging

is needed to be included in our CPLAS.

Due to this motivation, for the students to study

writing the whole source code from scratch, we propose

the Code Writing Problem (CWP) as a new type of

programming assignment in CPLAS. A CWP instance

consists of a problem statement, an input list, and an

expected output. A student needs to refer to the given

information in a CWP instance and write the whole

source code from scratch.

To mark the students’ answers, we use the code

validation function [7] to the students’ answer source

codes. The code validation function validates the answer

source code through 1) compiling test, 2) execution test,

and 3) output test. The first two steps are done by the gcc

compiler for C programs. For the output test, the output

from the students’ source code and the output from the

correct answer source code are checked using the

Levenshtein distance. To avoid cheating by students, we

randomly generate the input data and are given to the

students’ source code and correct answer source code for

the output test.

For the evaluation, we generated 11 CWP instances

and asked 9 students from the Tokyo University of

Agriculture and Technology and 1 student from Niigata

University to solve. The answer results and feedback

from the students confirmed that CWP is valid as a new

programming assignment in CPLAS to study writing C

source codes from scratch.

The rest of this paper is organized as follows: Section

II proposed the code writing problem in CPLAS. Section

III evaluates the proposed code writing problem. Finally,

Section IV concludes this paper with future work.

II. PROPOSAL OF CODE WRITING PROBLEM

In this section, we present the proposal of the code

writing problem.

A. Overview of CWP

In a CWP instance, a problem statement, an input list,

and an expected output are given to the student. A student

writes a C program source code from scratch by referring

to the given problem statement and the expected output.

The code validation function checks the student answer

code through 1) compiling test, 2) execution test, and 3)

output test. Compiling test and execution test are done by

gcc compiler while the output test is done by matching

the output of the student answer with the output of the

correct answer using Lavenshtein distance. Here, in a

CWP instance, the problem statement is fixed however

the input list and the expected output are randomly

changed every time a student submits the answer. This is

to prevent cheating from the student by simply just

copying the expected output in their answer code.

B. CWP Instance Generation Procedure

The following four steps show the generation steps to

generate a CWP instance:

(1) Select a source code from a website or a textbook

and register it as a model answer source code.

(2) Create the problem statement and register it.

(3) Specify the input file condition to randomly

generate the input list.

(4) Apply the code validation function to generate the

input list and expected output.

C. Implementation of CWP on the CPLAS Platform

In this section, we will present the implementation of

CWP on the CPLAS platform using Node.js [8],

Express.js [9], and EJS.

1) Software architecture

In this particular implementation, the server platform

operates on Ubuntu 22.04 LTS, running on Windows

Subsystem for Linux (WSL) on the Windows 11

operating system. The web application server is

implemented using Node.js, in conjunction with the

Express.js framework. EJS serves as the designated

template engine for this system. Instead of employing a

dedicated database, all data management operations are

carried out using a conventional file system. The GNU

Compiler Collection (GCC) is utilized as the C language

compiler in this setup. Editing of the source codes is

performed using the Visual Studio Code (VS Code)

integrated development environment. Within this

architectural design, the model (M) component relies on

Python to handle all subprocesses related to the compiler,

while the view (V) component incorporates EJS, CSS,

and JavaScript. Finally, the controller (C) component

leverages JavaScript, specifically Node.js and Express, to

fulfill its role.

2) Sever-Side implementation

Node.js exhibits a sophisticated and intricate

architecture, rendering it challenging to maintain.

Consequently, in this particular implementation, Express

is adopted in conjunction with Node.js. Express.js

adheres to the MVC (Model-View-Controller) structure,

which serves as a programming design pattern. Utilizing

Express requires the installation of both Node.js and the

accompanying node package manager (npm) through the

designated installer for each respective operating system.

npm assumes a pivotal role in facilitating Node.js

application development by granting access to a

comprehensive assortment of reusable JavaScript libraries.

These libraries are vital for diverse stages of application

development, encompassing development, testing, and

production. Furthermore, npm enables the execution of

tests and the utilization of development tools during the

software development process.

The application environment utilizes npm to import

additional dependencies required for its operation,

including frameworks and template engines. In this

application, the dependencies that are being used include

bootstrap, codemirror, date-utils, debug, ejs, express,

http-errors, and so on.

Upon successful installation of Express.js, the system

generates several directories, namely bin, nodemodules,

public, routes, and views. Subsequent sections will

provide comprehensive elucidation on the functionality

International Journal of Learning and Teaching, Vol. 10, No. 2, 2024

262

and significance of each directory in facilitating the

optimal operation of the applications.

Within the Node/Express.js framework, individual web

applications are created and executed on dedicated web

servers. Express.js offers mechanisms for explicitly

defining the appropriate function to be invoked for a

specific HTTP [10] verb (e.g., GET, POST, SET) and

URL pattern, commonly referred to as a “route”.

Additionally, Express.js facilitates the specification of the

designated template “view” engine, along with the

precise location of template files and the specific

template employed to generate a response for rendering

purposes.

3) Connection between server and browser

The interaction between the server and the browser

occurs through the following sequence of procedures

when a client accesses the server’s designated URL

(Uniform Resource Locator) with the specified port, such

as “localhost:2000”, from the browser. This process is

illustrated in Fig. 1.

Fig. 1. CPLAS application directory structure using Express.js.

• package.json: Initially, the web application

references the package.json file. This file serves

as a comprehensive record of dependencies

associated with a specific JavaScript “package”. It

includes essential details such as the package’s

name, version, description, initial file for

execution, production, and development

dependencies, as well as the compatible version

of Node.js. The package.json file encapsulates all

the necessary information required by npm to

retrieve and execute the application. Within the

file, the “start” key, and its corresponding value,

“node/bin/www”, are located in the script tag.

This configuration signifies that the Node.js

project invokes the “www” file located in the bin

folder, which effectively collects the data

indispensable for the functioning of Express.js

within the application.

• www: The “www” file serves as the entry point

for the application and enables the configuration

of various setup parameters. In the current

application, three distinct scripts are configured

within this file: app, debug, and http.

4) Adopted languages for MVC model for CWP

The MVC model serves as the adopted software

architecture for the Code Writing Problem (CWP) within

the CPLAS platform. This model adheres to the standard

architecture employed in web application systems. Fig. 2

presents an overview of the software architecture

designed for addressing the Code Writing Problem. In

this specific configuration, Python is employed within the

model component, whereas EJS (Embedded JavaScript),

CSS (Cascading Style Sheets), and JavaScript are utilized

for the views component. JavaScript alone fulfills the role

of the controller component in this MVC-based software

architecture.

Fig. 2. MVC model in CPLAS using Node.js.

• Model: The model component in the CPLAS is

responsible for accessing and processing essential

data files stored in a predefined file system

known as “addon”. These files consist of student

assignment answer code files and validator files.

The marking function within CPLAS varies based

on the problem type. Specifically, for the code

writing problem, Python is utilized to implement

the marking function.

During the marking process, the function

generates randomized input and subsequently

produces the expected output by executing the

model answer code. If the student’s answer code

is successfully compiled, the function proceeds to

compare its output with the expected answer

output, employing the calculation of the

Levenshtein distance. The marking results,

including the compile log, are then recorded in

the file system and made accessible to the student

through the browser interface.

To ensure data persistence, the student’s

answers, and the corresponding marking results

are temporarily saved in the browser’s local

storage using a unique key. Subsequently,

students have the option to store this data from

the local storage into a text file within the output

folder, located in the “addon” directory of the

application.

• View: The view component in the CPLAS

assumes the responsibility of implementing the

user interface. This is accomplished through the

utilization of the EJS template, enabling the

dynamic rendering of content within the browser.

To enhance visual aesthetics, the SkyBlue CSS

framework is employed for styling purposes.

International Journal of Learning and Teaching, Vol. 10, No. 2, 2024

263

Fig. 3. Problem answer interface for code writing problem.

EJS is configured to construct HTML code

along with JavaScript code snippets, which are

dynamically passed to the application’s backend.

Specifically, for the code writing problem, the

CodeMirror CSS is utilized to facilitate syntax

highlighting, gutters, and certain keyboard

shortcuts. All EJS files pertaining to the

application are located within the designated

“views” directory.

The application initiates the rendering process

by accessing the index file, which serves as the

home page of the application. This file

incorporates essential components such as the

title, menu, and main body, each tailored to the

specific problem type. Fixed aspects of the

interface are generated using EJS and CSS, while

the variable sections are generated through

JavaScript functions stored in the public directory.

To ensure modularity and simplicity within the

code architecture, the main body of the interface

is dynamically exchanged with the relevant EJS

file based on the client’s requested route. This

approach reduces code redundancy and

streamlines the overall code structure.

• Controller: The controller component within

CPLAS is implemented using JavaScript. Upon

receiving a request, the application proceeds to

determine the appropriate action based on the

URL pattern and the associated information

conveyed through POST or GET data. This may

involve accessing or modifying data stored within

the file system, as well as performing any

necessary tasks to fulfill the request. Express.js

facilitates the seamless transfer of data through

the designated routes. During data transfer, the

route is assigned a relevant name, which aids in

organizing the flow of information.

Subsequently, the application generates a

response to be sent back to the web browser. This

often entails the dynamic creation of an EJS page,

which serves as the view to be rendered within

the browser. The generated page is tailored to the

assigned name and incorporates the retrieved data

by inserting it into the appropriate placeholders

within the EJS template.

Node.js and Express.js collectively possess the

capability to effectively handle websites with

dynamic data. Furthermore, the hierarchical

structure and grouping concepts inherent in

Node.js and Express.js contribute to the

maintainability of the system, particularly for

individuals well-versed in these technologies.

5) Problem answer interface

Fig. 3 shows the problem answer interface of CPLAS

for the code writing problem. To allow students to solve

the assigned problem efficiently, the following features

are implemented:

• The last answer code submitted by the student is

recorded and shown in the code input area to

avoid starting all over again.

• The buttons to select the next and previous

problems are added.

• The buttons to select the theme that the students

prefer.

• Syntax Highlight is included to increase the

readability of the code.

• The expected output is updated every time the

new input list is generated to allow the students to

be able to refer to the expected output for the

current input list.

• The output of the students is updated every time

the students submit their code.

International Journal of Learning and Teaching, Vol. 10, No. 2, 2024

264

Fig. 4. Problem list interface of code writing problem.

6) Problem list interface

Fig. 4 shows the list of the problem instances to be

solved in this code writing problem category. Here, the

problems that have not been solved will be shown as

“Trying” and correctly solved problems will be shown as

“Completed”.

D. Implementation of Code Validation Function

This section presents the method of implementing the

code writing problem using Python. The version of

Python that is being used is version Python 3.10.6. Fig. 5

shows the overview of the implementation of the code

validation function in CPLAS.

Fig. 5. Code validation function procedure.

1) Generate random input file

In the code validation function in CPLAS, the input

file prepared by the teacher needs to be random and

changes every time the student submits his/her source

code. This is because the input list and expected output

are shown to the student in the CWP user interface.

Students can just use printf to pass the output test.

Therefore, a random input file generator that takes the

necessary conditions to create the random input file is

implemented. Every time a student submits a source code,

it will generate an input file according to the conditions

specified by the teacher for the specific question.

The random input file generator is built using Python.

To make it easy for the teacher to set the conditions of the

input file, all the options can be written in the input file

name. Then, the input file generator will parse the input

file name and create a list of inputs according to the

options. Normally, the input file name is written as {input

type} {option} inputfile.txt. There are a few types of

input types and ranges of input. Input types include int,

double/float, and char. All of the available options are

shown in Tables I, II, and III. N, R, and D in the table

represent a positive number, range expressed in the

following way (smaller number – bigger number), and

lastly the number of digits and decimals expressed in the

following way (number of digit.number of decimal)

respectively.

TABLE I. OPTION FOR INT INPUTFILE.TXT

Int Option Function

N / _N__ N number of positive integer (0–10)

_N_R_ / _N__R_ / _N_R__
N number of positive integer in R

range

_N_N1_ / _N_N1__

N number of positive integer and

N1 number of negative integer (−10–

10)

_N_N1_R_

N number of positive integer and

N1 number of negative integer in the R

range

__N_ / __N__ N number of negative integer (−10–0)

__N_R_
N number of negative integer in R

range

TABLE II. OPTION FOR DOUBLE INPUTFILE.TXT

Double Option Function

N/ _N__
N number of positive number (0–10)

with 6 decimals

_N_D_ / _N__D_ / _N_D__
N number of positive number

(digits.decimals)

_N_N1_ / _N_N1__
N number of positive integer and
N1 number of negative integer

(−10–10) with 6 decimal

_N_N1_D_

N number of positive integer and

N1 number of negative integer

(digits.decimals)

__N_ / __N__
N number of negative integer (−10–0)

with 6 decimals

__N_D_
N number of negative integer

(digits.decimals)

TABLE III. OPTION FOR CHAR INPUTFILE.TXT

Char Option Function

N / _N__ N number of character (a–Z)

_N_N1_ / _N_N1__ N number of string with length of N1

__N_ / __N__ N number of word

__N_R_
N number of sentence

(R range of sentence length)

__N_D_ N number of sentence (Number of words)

R
R range of string (Show number of

character)

D D length of sentence (Show number of word)

For example, a file name with int_3_inputfile.txt will

create an input file with 3 integers.

double__5_4.10_inputfile.txt will create an input file

consisting of 5 double numbers with 4 digits and 10

decimals. char__6_inputfile.txt will create an input file

consisting of 6 words. In addition, int_4_1-

100_inputfile.txt shown in Fig. 6 will create an input file

consisting of 4 integers within the 1 to 100 range.

2) Correct answer preparation

In the correct answer preparation step for the CWP, the

teacher needs to prepare a compiled program of the

International Journal of Learning and Teaching, Vol. 10, No. 2, 2024

265

correct answer code for the assignment. The correct

answer code has to be compiled using gcc 11.3.0 in WSL

2 Ubuntu 22.04 distribution. Then, the compiled program

is saved as admin exe in the assignment folder.

C programs that are compiled by gcc are targeted to

the operating system directly and they cannot be run on

other operating systems. However, the adoption of

Docker [11] allows the compiled program to run in a

Docker containter [12] on all platforms. Thus, building a

docker image with Ubuntu base allows the compiled C

program to run in a container on all platforms.

Fig. 6 shows the files needed to be prepared by the

teacher. These include a template file for the student with

assignment name (max_number.c), a compiled program

of the correct answer code (admin exe), an output of the

correct answer code (admin_output.txt), an input file to

generate random inputs for the specific problem (int_4_1-

100_inputfile.txt) and the problem statement

(problem.txt).

Fig. 6. Files needed to be prepared for one assignment.

3) Compiling test

When a student submits a source code, the code will be

saved in submit folder which is inside an addon directory.

In the compiling test, the source code files are compiled

by using the gcc compiler. An error message will be

shown to the student in the output text area if syntax

errors are detected by the compiler.

Fig. 7 shows an example of compile error message.

The student forgot to put “,” at the end of line 10 which

cause the compiler to output the error message. Those

error messages and output data will be saved in the result

folder.

Fig. 7. Example of compile error message.

4) Execution test

In the execution test, the execution code that is

obtained in the compiling test is run, with the random

input list. Then, if some errors are detected by the

Operating System (OS) while running the code, such as

the incorrect input data format, the zero division, the

buffer overflow, and the infinite loop, this function will

report the corresponding message from the OS. For the

infinite loop, the maximum running time is set at the

execution. If the code passes this test, the next test will be

applied.

5) Output test

After the execution test, the output test is performed.

This test checks the Levenshtein distance between the

output of the student source code with the correct output

stored in admin_output.txt. Lavenshtein distance allows

the student to know which line of his/her answer code

needs to be modified to reach the correct answer. If the

distance is 0, the output text will be shown as the “correct

answer” in the output text area of the interface. Fig. 8

illustrates the output messages shown in the output text

area when the student’s answer code is correct. Fig. 9

presents the output messages shown in the output text

area when the student’s answer code is not correct.

Fig. 8. Example of the correct answer output message.

Fig. 9. Example of the incorrect answer output message.

E. Adoption of Docker

In this section, to help students install the CPLAS

platform into their computers, we present the adoption of

Docker.

1) CPLAS docker workflow

The following procedure describes the steps of

adopting Docker for the installation of the CPLAS on a

PC.

• Dockerfile Creation: A Dockerfile is a text-based

document that outlines the sequence of

instructions for copying files and installing the

necessary software for the application. In this

particular application, Node.js and Python serve

as the chosen software platforms. However, due

to the usage of some Linux software such as gcc,

International Journal of Learning and Teaching, Vol. 10, No. 2, 2024

266

ubuntu is used as the base image for building the

Docker Image through the command shown in

Fig. 10. After that, Node.js, gcc, as well as pip

(Python package manager), are installed with the

code as shown in Fig. 11. The important

dependencies of Node.js such as Express.js and

EJS are described in package.json, together with

packages used in the Python program are

included in the Dockerfile through code shown in

Fig. 12.

Fig. 10. Ubuntu as base image.

Fig. 11. Installing required application.

Fig. 12. Installing required packages.

• Dockerfile Image Building: In order to create a

Docker image, we need to download and install

the required platforms and libraries and then

package them into a single image, which can be

stored on Docker Hub [13] or a local registry.

Docker will follow the instructions in the

provided Dockerfile in the specified order. After

each instruction is executed, the result is cached,

and the build proceeds to the next one. Once all

the instructions in the Dockerfile have been

completed, the Docker image will be constructed

on the local machine. After navigating to the

application folder which contains the Dockerfile

previously, running the code shown in Fig. 13

line 1, the docker image named “cplas” is built.

Executing Fig. 13 line 4 allows the generated

Docker image to be uploaded to Docker Hub

which can be accessed by students.

• Container Running: Generated Docker image can

run as the container using Docker “run”

command. The command includes the

information on port settings as shown in Fig. 14

to reduce the complication for the students.

Then, it is checked that the student answer files

are successfully saved in the three folders named

“results”, “output” and “submits” in the container

directory that is mounted with the local file

system for accessing by the user.

Fig. 13. Docker image building.

Fig. 14. Docker run command.

2) Usage of docker-based CPLAS

The distribution of the CPLAS Docker image from the

administrator to the student who will use it can be done

through Docker Hub. The CPLAS Docker image can be

stored in the Docker Hub account using Docker “push”

command as shown in Fig. 13 line 3. Creating a Docker

Hub account is a straightforward process on the Docker

Hub website, a platform provided and maintained by

Docker for discovering and sharing container images.

Students with access to the CPLAS platform can retrieve

the CPLAS Docker image from Docker Hub using the

following command in Fig. 15.

Fig. 15. Docker pull command.

3) System installation

To utilize this platform, students should perform the

following steps which are outlined in the accompanying

manual file:

• Download and install Docker according to the

Operating System (OS) of his/her personal

computer. For Windows OS, the student is

required to install Windows Subsystem for Linux

(WSL).

• Use the Docker pull command to download the

CPLAS Docker image from Docker, after running

Docker on the computer.

• Use the Docker run command to run the image

and expose it to the correct port in the computer.

• Open the browser and type localhost:2000 to

access the CPLAS platform.

III. EVALUATION

In this section, we evaluate the Code Writing Problem

(CWP) in CPLAS through applications to nine students at

the Tokyo University of Agriculture and Technology and

one student at the Niigata University to install and use the

implemented CPLAS platform, by referring to the user

manual.

A. Solution Result by Students

Table IV shows the number of submissions by each

student. Correct answers are colored in green while the

wrong answers are colored in red. If a teacher finds that a

lot of re-submissions have been done by many students

for a particular assignment, this assignment can be

considered too difficult such as 7, 9, 10, and 11 for the

students. If a teacher finds a student who submitted codes

more times than other students, this student needs more

sudo docker build -t cplas

sudo docker push chaixm/cplas:latest

docker run -p 2000:2000/tcp chaixm/cplas

RUN pip install –upgrade \

 Lavenshtein \

 func_timeout \

 datetime

RUN npm install

RUN apt-get update; apt-get install -y curl \

 && curl -sL https://deb.nodesource.com/setup_14.x |

 bash - \

 && apt-get install -y nodejs \

 && curl -L https://www.npmjs.com/install.sh | sh

RUN apt-get install -y \

 Python3-pip \

 gcc
docker pull chaixm/cplas:latest

FROM ubuntu: latest

International Journal of Learning and Teaching, Vol. 10, No. 2, 2024

267

attention from the teachers. In this logging system, it is

discovered some students’ logs are not recorded, thus,

this error needs to be fixed in future works.

B. Feedback from Students

Then, we asked the feedback from students with 9

different questions with a score from 1 to 5. We requested

9 students from the Tokyo University of Agriculture and

Technology and 1 student from the Niigata University to

install and use the implemented CWP on the CPLAS

platform, by referring to the user manual. Then, the

feedback from the 10 students on 9 questions is recorded.

Table V shows the feedback from those students where 5

is the best evaluation and 1 is the least. Most students

were satisfied with this platform. Thus, the validity is

confirmed. However, on the other hand, a few students

discovered some errors in this CPLAS platform that need

to be fixed in future works. The errors and their proposed

solutions in the future are shown as follows:

• Problem 1: When getting into an infinite loop the

time limit is too long causing the student to reload

the page and lost his/her written answer.

• Solution 1: Reduce the time limit and save the

written answer before proceeding to other tasks.

• Problem 2: Submit button cannot be clicked

without scrolling the page.

• Solution 2: Fix the Submit button.

• Problem 3: Even though the answer is correct the

main page still shows that it is in the “Tring”

status instead of “Completed” and vice versa.

• Solution 3: Fix the JavaScript function to show

the correct status of each problem.

• Problem 4: It will be better if the number of

problems is shown for each assignment and a hint

for each question.

• Solution 4: Add the number of problems for each

assignment and give hint in the template file.

• Problem 5: The download button does not

function correctly.

• Solution 5: Fix the JavaScript function to

download the students’ answer codes correctly.

• Problem 6: Levenshtein distance is not accurate

if the mistake is just a line break.

• Solution 6: The Lavenshtein distance used in

CPLAS is checked line by line. The assignment

problems in

CWP are designed for the students to follow

the expected answer output exactly even for line

breaks and spaces. Therefore, it will show

mistakes even if an extra line break is inserted in

the output of the student’s answer code.

• Problem 7: Several typos are found in the

problem statement.

• Solution 7: Correct the problem statement.

TABLE IV. STUDENTS’ RESULTS AND NUMBER OF SUBMISSIONS

Student/

Question
1 2 3 4 5 6 7 8 9 10 11

1 4 12 6 6 1 1 1 1 1 1 1

2 1 3 2 2 1 9 5 7 8 3 1

3 1 1 1 2 1 1 3 1 1 2 6

4 12 12 1 3 6 1 1 1 1 1 2

5 2 1 4 3 3 2 8 3 1 21 2

6 2 4 2 1 1 7 3 6 13 12 13

7 5 3 4 2 1 1 5 9 15 3 5

8 3 3 5 5 1 1 11 13 17 34 42

9 5 2 5 4 1 3 2 4 2 5 8

Avg. no. of

submission
3.89 4.56 3.33 3.11 1.78 2.89 4.33 5.00 6.56 9.11 8.89

SD of no. of

submission
3.21 4.09 1.76 1.52 1.62 2.85 3.16 3.92 6.40 10.78 12.28

Avg. correct

rate
1.00 1.00 0.89 1.00 1.00 0.78 0.78 0.78 0.78 0.78 0.56

SD correct

rate
0.00 0.00 0.31 0.00 0.00 0.42 0.42 0.42 0.42 0.42 0.50

International Journal of Learning and Teaching, Vol. 10, No. 2, 2024

268

TABLE V. QUESTIONS AND RESULTS OF FEEDBACK ON CPLAS

No. Question

Number of students on each

score

1 2 3 4 5

1
Is it easy for you to solve C

programming using CPLAS?
0 2 3 4 1

2
Are the instruction in the

manual file of CPLAS clear?
0 0 2 3 5

3

Is the installation process you

did for using CPLAS easy for
you?

1 2 1 4 2

4
Do you think that the marking

is accurate?
0 1 1 3 5

5

Do you feel that showing

Levenshtein distance for

incorrect problem is motivated

for you to solve the problems
again?

0 4 2 2 2

6

Do you want to solve the

problem which is already
corrected?

1 5 4 0 0

7

Do you feel that your

programming study is

improved after solving the
problems in CPLAS?

0 1 2 5 2

8

Are you satisfied using

CPLAS in C programming
study?

0 0 6 3 1

9

How many rates do you want

to give the CPLAS system

overall?

0 0 6 4 0

IV. CONCLUSION

This paper presented the Code Writing Problem

(CWP) for C Programming Learning Assistant System

(CPLAS). For evaluations, 11 CCP instances were

generated and assigned to 9 students from the Tokyo

University of Agriculture and Technology and 1 student

from Niigata University. Their solution results showed

that the CWP instances are generally suitable for C

programming study by novice students. Then, we asked

for feedback from those 10 students with 9 questions. The

answer score for the feedback is from 1 to 5, where 5 is

the best evaluation and 1 is the least. Overall, we got

good evaluation feedback. However, through this

application to students, we found some small problems in

the implementation. In the future, we will fix those

problems and improve the random input generator.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Htoo Htoo Sandi Kyaw wrote the paper; Chai Xu Min

conducted the research and analyzed the data; Keiichi

Kaneko advised on the experiments; Soe Thandar Aung

helped in system implementation; Nobuo Funabiki

advised on the system implementation; Annisa Anggun

Puspitasari helped in system implementation; all authors

had approved the final version.

ACKNOWLEDGMENT

We are very grateful to our laboratory members for the

fruitful discussions of advancing this research. We would

also like to thank all the students who participated in the

experiments.

REFERENCES

[1] Top programming languages 2022. IEEE Spectrum survey.

[Online]. Available: https://spectrum.ieee.org/top-programming-
languages-2022

[2] X. Lu, S. T. Aung, H. H. S. Kyaw, et al., “A study of grammar-

concept understanding problem for C programming learning,” in
Proc. LifeTech, 2021, pp. 162–165.

[3] X. Lu, N. Funabiki, H. H. S. Kyaw, et al., “Value trace problems

for code reading study in C programming,” Adv. Sci. Tech. Eng.
Syst. J. (ASTESJ), vol. 7, no. 1, pp. 14–26, 2022.

[4] H. H. S. Kyaw, N. Funabiki, S. L. Aung, N. K. Dim, and W.-C.

Kao, “A study of element fill-in-blank problems for C

programming learning assistant system,” Int. J. Inform. Edu. Tech.

(IJIET), vol. 11, no. 6, pp. 255–261, 2021.

[5] H. H. S. Kyaw, E. E. Htet, N. Funabiki, et al., “A code completion
problem in C programming learning assistant system,” in Proc.

ICIET, 2021, pp. 34–40.

[6] X. Lu, S. Chen, N. Funabiki, M. Kuribayashi, and K. Ueda, “A
proposal of phrase fill-in-blank problem for learning recursive

function in C programming,” in Proc. IEEE LifeTech, 2022, pp.

127–128.
[7] A. A. Puspitasari, N. Funabiki, X. Lu, et al., “An implementation

of code validation function in C programming learning assistant
system,” Int. J. Inform. Edu. Tech. (IJIET), vol. 9, no. 1, pp. 24–30,

2023.

[8] D. Herron, Node.js Web Development, Packt Publishing, 2016.
[9] Express. [Online]. Available: https://expressjs.com/

[10] HTTP. [Online]. Available: https://nodejs.dev/learn/build-an-http-

server

[11] R. McKendrick, Monitoring Docker, Packt Publishing Ltd, 2015.

[12] A. Mouat, Using Docker: Developing and Deploying Software

with Containers, O'Reilly Media, Inc., 2015.
[13] Docker Hub. [Online]. Available: https://hub.docker.com/signup

Copyright © 2024 by the authors. This is an open access article
distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-
commercial and no modifications or adaptations are made.

International Journal of Learning and Teaching, Vol. 10, No. 2, 2024

269

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

