
An Implementation of Code Validation Function

in C Programming Learning Assistant System

Annisa Anggun Puspitasari1, Nobuo Funabiki1, Xiqin Lu2,*, Huiyu Qi2, Htoo Htoo Sandi Kyaw3, and

Kiyoshi Ueda4

1 Okayama University, Japan; Email: annisanggun@gmail.com (A.A.P.), funabiki@okayama-u.ac.jp (N.F.)
2 Graduate School of Natural Science and Technology, Okayama University, Japan;

Email: pch55zhl@s.okayama-u.ac.jp (H.Q.)
3 Division of Advanced Information Technology and Computer Science, Tokyo University of Agriculture and

Technology, Tokyo, Japan; Email: htoohtoosk@go.tuat.ac.jp (H.H.S.K.)
4 College of Engineering, Nihon University, Koriyama, Japan; Email: ueda.kiyoshi@nihon-u.ac.jp (K.U.)

*Correspondence: p06v8z20@s.okayama-u.ac.jp (X.L.)

Abstract—In many universities around the world, C

programming is offered as the first programming course. To

help novice students learn on their own, we have developed

the C Programming Learning Assistant System (CPLAS).

Currently, CPLAS offers simple practice questions at the

elementary level, where any question requires a word, a

sentence, or a number as the answer and the student answer

is checked against the correct answer by string matching.

However, CPLAS does not cover the problems of writing

source codes completely from scratch such that the

correctness of each code must be validated automatically. In

this paper, we present the implementation of the code

validation function for validating the answer source code

through 1) compiling test, 2) execution test, and 3) output test.

Here, the software test approach using test codes is not

adopted, because it might be too difficult for novice students.

For evaluations, we applied the proposal to 2, 045 source

codes from 43 first-year students at the C programming

course in Nihon University, Japan. We analyzed the answer

results and confirmed the effectiveness of the proposal. In

future works, we will introduce this function in the CPLAS

platform, which will be used to help students with

self-studies.

Keywords—C programming, C Programming Learning

Assistant System (CPLAS), novice student, self-study, code

validation

I. INTRODUCTION

Presently, C programming is offered at the first

programming courses to undergraduate students in a lot of

universities around the world. C programming is useful for

studying advanced and practical programming languages,

such as Java, Python, and JavaScript, which are more

suitable and easier to implement practical and large-scale

application systems. Besides, it can be used to study

fundamental data structure and algorithms, and computer

architecture for students in Information Technology (IT) or

 Manuscript received June 11, 2022; revised July 12, 2022; accepted

August 7, 2022.

Computer Science (CS) departments all of which are

essential subjects in the computing curriculum. In [1],

Saqib mentioned that knowledge and understanding of

computer programming in C and C++ is one of the most

fundamental skills for today’s students.

To assist self-studies of C programming by novice

students, we have developed the C Programming

Learning Assistant System (CPLAS). Currently, CPLAS

provides simple exercise problems at elementary levels,

including the Grammar-Concept Understanding Problem

(GUP) [2], the Value Trace Problem (VTP) [3], the

Element Fill-in-Blank Problem (EFP) [4], the Code

Completion Problem (CCP) [5], and the Phrase

Fill-in-Blank Problem (PFP) [6]. In them, an instance

consists of a source code, a set of questions and their

correct answers. Any question requires a word, a sentence

or a number as an answer, which is checked for correctness

by string matching against the correct answer stored in the

system. The common answer interface has been

implemented on a web browser [7]. The marking function

was implemented by JavaScript that runs on the web

browser.

The outline and learning goal of each exercise problem

are described as follows:

• GUP reminds the knowledge and concepts of

reserved words and common libraries in the given

source code, for grammar study.

• VTP questions the values of important variables

and output messages in the source code.

• EFP requests to fill in the blank elements in the

source code with their originals by understanding

the syntax and semantics.

• CCP does not show the locations of the blank

elements in EFP.

• PFP requests to fill in the blank phrases that may

consist of multiple elements in the source code.

These problems are mainly designed for code reading

and code understanding studies [8, 9]. They do not include

the problems of completely writing source codes from

scratch that satisfy the specification requirements for

International Journal of Learning and Teaching, Vol. 9, No. 1, March 2023

24doi: 10.18178/ijlt.9.1.24-30

coding study, although the ability to truly master C

programming and be able to write code from scratch is

essential.

In this paper, we present the implementation of the code

validation function for validating the answer source code

from a student to a given assignment for the Code Writing

Problem (CWP) in CPLAS. This function is implemented

in Python, and validates the correctness of the source code

through the three tests: 1) compiling test, 2) execution test

and 3) output test. The compiling test compiles the source

code using GCC compiler. The output test checks whether

the source code correctly outputs the data or messages

with the correct format for the given input that are

specified by the teacher.

The research question in this paper is: “Can we

implement an efficient environment for CWP in CPLAS

using Python?”. Unlike CWP for Java programming [10],

the software test approach using test codes is not adopted

here, because it can be too difficult for novice students. In

the software test approach, the students have to understand

the roles of the test code and to write the source code that

can be tested by the test code. Python offers rich and useful

library functions that help to implement the code

validation function with short and readable codes. This

feature will be beneficial for future use and customizations

by a lot of programming course teachers.

For the evaluation, we applied the implemented

function to 2,045 answer source codes to 50 assignments

from 43 first-year students who took the C programming

course in Nihon University, Japan. The results found that 1,

583 source codes among them successfully passed all of

the tests and became correct, where 30 codes failed in the

compiling test, 8 codes failed in the execution test and 424

codes failed in the output test. With this implemented

function, the teacher can easily perceive the progress or

stagnance in C programming study of every student. Thus,

the effectiveness of the proposal is confirmed.

The implementation of the code validation function in

this paper intends the use of teachers in C programming

courses. By using this function, teachers can validate a lot

of source codes submitted from students in the courses

automatically and check the validation results for each

assignment at a glance. However, CPLAS has been

developed for self-studies of students. Therefore, in future

works, we will include this function in the CPLAS

platform that is under developments using Node.js for the

web application server.

The rest of this paper is organized as follows: Section II

presents the implementation of the code validation

function. Section III shows the application results to

source codes from novice students for C programming

assignments. Section IV discusses related works in

literature. Finally, Section V concludes this paper with

future work.

II. RELATED WORKS

In this section, we discuss the related works in

literature.

Freund et al. [11] developed the Thetis programming

environment that is designed specifically for student use.

This system consists of the C interpreter and the

associated user interface to provide simple and easily

understood editing, debugging and visualization

capabilities. It is more suitable for students in introductory

computer science particularly those for languages like

ANSI C, assume the level of sophistication that novice

students do not possess.

Godefroid et al. [12] presented Directed Automated

Random Testing (DART) for automatically testing soft-

ware that combines (1) automated extraction of the

interface of a program with its external environment using

static source-code parsing, (2) automatic generation of a

test driver for this interface that performs random testing

and (3) dynamic analysis of how the program behaves

under random testing and automatic generation of new test

inputs. Experiments were conducted to C source codes.

Lahtinen et al. [13] studied the difficulties in learning

basic programming, which include concepts that require

understanding larger entities of the program, abstract

concepts like pointers and memory handling and a group

of topics such as input, output and libraries. They also

suggested that students need practical experiences to

understand the concepts.

Ihantola et al. [14] presented a systematic literature

review of the development of automatic assessment tools

for programming exercises between 2006 and 2010.

Salleha et al. [15] presented preliminary results of

research related to programming teaching tools in 45

papers in the ACM digital database between 2005 and

2011 with questions: What are the important issues in

programming teaching and learning research? What are

the methods of the research? What kind of tools involved in

programming teaching and learning? What is the level of

programming involved? Most of them concerned on

techniques and methods in teaching, learning and

assessment, and focused on introductory stage.

Dolgopolovas et al. [16] presented a case study on how

novice engineering students can be motivated to study

structured programming and coding in C using game

programming in the App Inventor environment.

Sobral [17] discussed the choice of the initial

programming language to be adopted in the first

programming course. It also listed the languages that are

currently most widely adopted in the “real world” and in

introductory programming courses in higher educations.

III. IMPLEMENTATION OF CODE VALIDATION FUNCTION

In this section, we present the implementation of the

code validation function for CPLAS. This function applies

the compiling test, the execution test and the output test

sequentially to every answer source code file that is stored

in the designated folder.

A. Compiling Test

The compiling test compiles the source code files by

using the gcc compiler. However, if syntax errors are

detected by the compiler, then this function will report the

corresponding message in the error message file from the

compiler. Otherwise, the next test will be applied.

International Journal of Learning and Teaching, Vol. 9, No. 1, March 2023

25

The current implementation of the function does not

assume specific compile options for each assignment,

because it should cover only introductory programming

assignments. However, the study of various compile

options will be necessary for students. For this case, the

teacher should prepare the Makefile to compile the code

with the necessary options. The extension of the function

will be in future works.

B. Execution Test

The execution test runs the execution code that is

obtained in the compiling test, with the input data specified

by the teacher for each assignment if it exists. Then, if

some errors are detected by the Operating System (OS)

while running the code, such as the incorrect input data

format, the zero division, the buffer overflow and the

infinite loop, this function will report the corresponding

message from the OS. For the infinite loop, the maximum

running time is set at the execution. If the code passes this

test, the next test will be applied.

For this test, the teacher prepares the input file

containing the data or messages to be given to the code and

puts it at the specified file path. The teacher is allowed to

change the file path, but it is important to note that the

input file can be omitted when it is not necessary. Here,

command line parameters, standard input and file input are

supported. When the file input is included in the source

code, the teacher requests the students to use the specified

file path for the source code of this file input in the

assignment.

Likewise, the current implementation does not assume

that each assignment has specific options to run the code.

To allow them, the teacher should prepare the script file to

run the code with the necessary options. The extension of

the function will be done in future works.

C. Output Test

The output test checks whether the source code

correctly outputs the data or messages for the given input

that is specified by the teacher. For this test, the teacher

needs to prepare the output file that contains the data or

messages to be output from the code and the output data or

messages will be stored in the execution result file. Then,

the Levenshtein distance between the texts in the two files

will be calculated. If the distance is 0, this test regards the

source code as the correct one. Otherwise, it will point out

the parts of the text in the execution result file that are

different from the text in the output file.

Here, the standard output and the file output are

supported. When the file output is included in the source

code, the teacher requests the students to use the specified

file path in their source codes for this file output in the

assignment.

D. Default File Paths

In this implementation, we use the following paths to

store the necessary files in the file system as the default:

• Answer source code files:

(F): \\StudentFiles\\(AssignmentGroup)

\\(AssignmentID)\\(StudentID)\\(StudentID_source

).c

• Input file:

(F): \\StudentFiles\\(AssignmentGroup)

\\(AssignmentID)\\inputfile.txt

• Report file:

(F): \\StudentFiles\\(AssignmentGroup)

\\(AssignmentID)\\report_(AssignmentID).xlsx

• Output file:

(F): \\StudentFiles\\(AssignmentGroup)

\\(AssignmentID)\\(StudentID)

\\(StudentID)_output.txt

• Compiler error message files:

(F): \\StudentFiles\\(AssignmentGroup)

\\(AssignmentID)\\(StudentID)\\(StudentID)_error.t

xt

It is noted that (AssignmentGroup), (AssignmentID) and

(StudentID) should represent the folder name foreach

assignment group, each assignment in the group and each

student, respectively. Here, assignments are often

categorized into several groups in programming courses,

because several programming topics such as reserved

words and libraries are related with each other.

(StudentID)_source).c should represent the answer source

code file of each student that will be validated by the

function. These names and the disk drive should be

properly selected by the user and be described in the

source codes of the function. The user interface to help the

descriptions will be done in future works.

E. Application Example

Here, we illustrate the application example of the code

validation function to a source code for the assignment #29

age sketch in Table I. This assignment assumes an

apartment with four rooms on each of the three floors. The

program requests to input the age of the residence of each

room from the first room on the first floor using the

standard input and to output the age of the residence from

the first room on the third floor until the fourth room on the

first floor.

1) Source Code File: Fig. 1 shows the example answer
source code file from a student for this assignment that
has several errors and mistakes.

2) Compiling Error Message File: Fig. 2 shows the
compiling error message file from the compiling test to
this source code. To pass the compilation test, the two
syntax errors must be removed, where wfile at line 14
should be replaced by while and; at line 22 should be
replaced by +.

3) Input and Output Files: For this assignment, the
teacher may prepare the input file in Fig. 3 as the input
data, and the output file in Fig. 4 as the corresponding
correct output data.

4) Output Test Result File: Even if the syntax errors in
the source code in Fig. 1 are removed, it may cause errors
in the output test. Fig. 5 shows the output test result file
from this test. It suggests that the output text at the sixth
line from the source code is different from the text at the
sixth line in the output file and no output text appears at
the seventh to ninth lines from the source code, although
the output file has the texts at the corresponding lines.

International Journal of Learning and Teaching, Vol. 9, No. 1, March 2023

26

file://///(AssignmentID)/(StudentID)/(StudentID_source).c
file://///(AssignmentID)/(StudentID)/(StudentID_source).c

1 #include<stdio.h>
2 #define NSIZE 3
3 #define MSIZE 4
4 Int main(void){
5 int i, j;
6 int score [NSIZE] [MSIZE] ;
7 printf(“Please enter thr age of the resident\n”);
8 for(i=0; i<NSIZE; i++)
9 printf(“<< %dth floor >>\n”, i+1);
10 for(j=0;j<MSIZE;j++){
11 do{
12 printf(“Room %d:”, j+1);
13 scanf(“%d”, &score[i] [j]);
14 }wfile(score[i] [j]<0);
15 }
16 }
17 printf(“\n”);
18 printf(“<< Age sketch of room redident >>\n”);
19 for(i=0;j<MSIZE;i++){
20 printf(“[%dth floor]”,NSIZE-i);
21 for(j=0;j<MSIZE;j++){
22 printf(“ (Rm. %d)%d y.o. “,j;1,score[NSIZE-i-1] [j]);
23 }
24 printf(“\n”);
25 }
26 return 0;
27 }

Figure 1. Answer source code file.

en9 −2−350.c : In function ’ main ’ :
en9 −2−350.c : 1 4 : 3 : error : expected ’ while ’ before ’

wfile ’
} w f i l e (score [i] [j] <0) ;

^~~~~
en9 −2−350.c : 2 2 : 3 5 : error : expected ’) ’

before ’ ; ’ token
p r i n t f (“ (Rm. %d)%d y . o . “ , j ; 1 , score [NSIZE−i −1] [j

]) ;
^

)

Figure 2. Compiling error message fil.

1 Please enter the age of the resident << 1 th floor>>
2 Room 1:25
3 Room 2 : 24
4 Room 3 : 23
5 Room 4 : 26
6 << 2 th floor>>
7 Room 1 : 22
8 Room 2 : 25
9 Room 3 : 24
10 Room 2 : 27
11 << 3 th floor>>
12 Room 1 : 25
13 Room 2 : 27
14 Room 3 : 27

15 Room 4 : 23

Figure 3. Input file.

1 << Age sketch of room resident >>

2 [3 th f l o o r] (Rm. 1) 25 y . o . (Rm. 2) 24 y . o . (Rm. 3) 23

y . o . (Rm. 4) 26 y . o .

3 [2 th f l o o r] (Rm. 1) 22 y . o . (Rm. 2) 25 y . o . (Rm. 3) 24

y . o . (Rm. 4) 27 y . o .

4 [1 th f l o o r] (Rm. 1) 25 y . o . (Rm. 2) 27 y . o . (Rm. 3) 27

y . o . (Rm. 4) 23 y . o .

Figure 4. Output file.

Output checking process using Levenshtein distance for
each l i n e :

Student Output : Line 6 −> << Age sketch of room redident >>

Correct Output : Line 6 −> << Age sketch of room resident >>

Levenshtein distance in Line 6 : 2

Student Output : Line 7 −>

Correct Output : Line 7 −> [3 th f l o o r] (Rm. 1) 25 y .

o. (Rm. 2) 24 y .o .(Rm. 3) 23 y . o . (Rm. 4) 26
y .o.

Levenshtein distance in Line 7 : 74

Student Output : Line 8 −>
Correct Output : Line 8 −> [2 th f l o o r] (Rm. 1) 22 y .

o. (Rm. 2) 25 y . o . (Rm. 3) 24 y . o . (Rm.
4) 27 y . o.

Levenshtein distance in Line 8 : 74

Student Output : Line 9 −>}
Correct Output : Line 9 −> [1 th f l o o r] (Rm. 1) 25 y .

o.(Rm. 2) 27 y . o . (Rm. 3) 27 y . o . (Rm. 4)
23 y . o

Levenshtein distance in Line 9 : 74

Total Levenshtein distance : 224

Figure 5. Output test result file.

Actually, this code has mistakes at lines 18 and 19,

where redident at line 18 should be replaced by resident

and for (i=0; j<MSIZE; i++) at line 19 should be replaced

by for (i=0; i<NSIZE; i++). Then, the source code will

output the correct one.

IV. EVALUATION

In this section, we evaluate the code verification

function of 50 assignments from C programming course

by applying the source code of 2,045 answers from 43

first-year students at Nihon University in Japan.

A. Programming Assignments

Table I shows the programming topic, the input data

type and the output data type for each assignment in this

application. Basically, elementary topics are selected for

programming assignments to first-year undergraduate

students.

B. Application Results

Table II shows the number of students who submitted

answer source codes, the total CPU time to run the

function, the number of codes that passed the three tests,

the number of codes that failed at the compiling test, the

number of codes that failed at the execution test and the

number of codes that failed at the output test for each

assignment. Table III shows the PC specification to run the

function.

Table II indicates that among the 2,045 source codes,

1,583 (77.41%) codes were correct, 30 (1.47%) codes

have syntax errors, 8 (0.39%) codes have infinite loops,

and 424 (20.73%) codes have output errors. The teacher

can easily figure out the progress or stagnance in C

programming study of each student. Thus, the

effectiveness of the implemented function is confirmed.

International Journal of Learning and Teaching, Vol. 9, No. 1, March 2023

27

TABLE I. ASSIGNMENT OVERVIEW

ID# topic input output

1 max number std std

2 decending order no std

3 even odd std std

4 larger smaller std std

5 max min std std

6 apples oranges std std

7 while loop no std

8 summation no std

9 summation 2 std std

10 student scores std std

11 area of triangle std std

12 even number std std

13 month std std

14 asterisks std std

15 distance of two points std std

16 birthday std std

17 max value std std

18 max value in group std std

19 max min in group std std

20 array total value no std

21 array total value 2 std std

22 average max min array std std

23 finding value in array std std

24 max score std std

25 calculation std std

26 average max min array 2 std std

27 vector std std

28 student scores 2 std std

29 age sketch std std

30 OX no std

31 subject scores std std

32 split letters std std

33 arrange letters std std

34 reverse string std std

35 prefecture std std

36 Nichidai Taro no std

37 student list std std

38 student scores 3 std std

39 student scores 4 std std

40 outputting input data std std

41 average calculation std std

42 max calculation std std

43 max calculation 2 std std

44 max calculation 3 std std

45 board games std std

46 board games 2 std std

47 board games 3 std std

48 board games 4 std std

49 board games 5 std std

50 board games 6 std std

TABLE II. APPLICATION RESULTS

ID
of

students

CPU time

(sec)

correct

code

comp.

error

exec.

error

output

error

1 42 22.49 34 1 0 7

2 42 12.77 37 0 0 5

3 43 13.93 37 0 0 6

4 43 14.50 32 0 0 11

5 42 12.30 39 0 0 3

6 40 11.90 27 1 0 12

7 43 13.22 42 0 0 1

8 43 12.99 43 0 0 0

9 43 18.97 36 0 0 7

10 42 13.33 35 0 0 7

11 42 24.00 26 0 0 16

12 41 11.26 37 1 0 3

13 42 19.15 41 0 0 1

14 42 11.54 39 1 0 2

15 42 11.32 36 2 0 4

16 41 18.99 38 0 0 3

17 40 11.37 40 0 0 0

18 40 11.67 36 0 0 4

19 40 19.86 18 0 0 22

20 42 13.76 40 0 0 2

21 42 11.75 34 1 0 7

22 41 12.31 32 1 0 8

23 40 12.89 28 1 0 11

24 42 17.46 38 1 0 3

25 41 12.56 39 2 0 0

26 39 19.22 31 0 0 8

27 38 13.28 33 0 0 5

35 41 13.28 20 1 1 19

36 43 13.13 41 0 0 2

37 41 11.80 38 0 0 3

38 40 11.61 19 2 0 19

39 39 14.95 20 0 0 19

40 40 17.47 23 2 0 15

41 39 17.56 19 1 0 19

42 38 14.24 12 1 0 25

43 38 14.41 2 1 0 35

44 38 13.30 20 2 0 16

45 42 11.36 37 1 1 3

46 41 12.73 33 0 0 8

47 41 21.82 34 1 1 5

48 40 21.38 31 1 0 8

49 38 20.59 29 0 1 8

50 38 20.47 26 1 1 10

total 2045 741.21 1583 30 8 424

TABLE III. PC SPECIFICATION

CPU Intel(R) Core(TM) i5-6200U 2.3GHz

memory 12GB

OS Windows 10 Pro 64-bit

compiler gcc 8.1.0

item specification

V. CONCLUSION

This paper presented the implementation of the code

validation function for validating the answer source code

of a C programming assignment through 1) compiling test,

2) execution test and 3) output test. The evaluation results

of 2, 045 source codes from 43 first-year students at the C

programming course in Nihon University, Japan,

confirmed the effectiveness of the function.

International Journal of Learning and Teaching, Vol. 9, No. 1, March 2023

28

In future works, we will generate new instances on

other topics in C programming and apply them to novice

students in various universities and departments.

Moreover, we will add new features of testing code

implementations such as names and data types of variables

and functions and adopted grammars. Furthermore, we

will implement the program for automatic input/output file

generations to help teachers, the user interface for

changing the usage setup depending on the requirements

from the users, and import the function into the CPLAS

platform for self-studies by novice students.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

A. Puspitasari mainly conducted the research and wrote

the paper. N. Funabiki and K. Ueda reviewed and finalized

the paper. X. Lu and H. Qi analyzed the data. H. H. S.

Kyaw collected the source codes. All the authors had

approved the final version.

ACKNOWLEDGMENT

We would like to thank the students of Nihon

University in Japan, who answered the 50 assignments and

gave us valuable opinions and suggestions. They are

inevitable to complete this paper.

REFERENCES

[1] M. Saqib. Why earn C as first programming language? [Online].
Available: https://www.mycplus.com/featured-articles/

why-learn-c-as-first-programming-language/

[2] X. Lu, S. T. Aung, H. H. S. Kyaw, et al., “A study of
grammar-concept understanding problem for C programming

learning,” in Proc. LifeTech, March 2021, pp. 162–165.

[3] X. Lu, N. Funabiki, H. H. S. Kyaw, et al., “Value trace problems for
code reading study in C programming,” Adv. Sci. Tech. Eng. Syst. J.

(ASTESJ), vol. 7, no. 1, pp. 14–26, Jan. 2022.

[4] H. H. S. Kyaw, N. Funabiki, S. L. Aung, et al., “A study of element
fill-in-blank problems for C programming learning assistant

system,” Int. J. Inform. Edu. Tech. (IJIET), vol. 11, no. 6, pp.

255–261, 2021.
[5] H. H. S. Kyaw, E. E. Htet, N. Funabiki, et al., “A code completion

problem in C programming learning assistant system,” in Proc.

ICIET, March 2021, pp. 34–40.
[6] X. Lu, S. Chen, N. Funabiki, et al., “A proposal of phrase

fill-in-blank problem for learning recursive function in C

programming,” in Proc. LifeTech, March 2022, pp. 127–128.
[7] N. Funabiki, H. Masaoka, N. Ishihara, et al., “Offline answering

function for fill-in-blank problems in Java programming learning

assistant system,” in Proc. ICCE-TW, May 2016, pp. 324–325.
[8] T. Busjahn and C. Schulte, “The use of code reading in teaching

programming,” in Proc. Koli Calling, 2013, pp. 3–11.

[9] Coder’s Cat. Learn from source code (an effective way to grow for
beginners). [Online]. Available:

https://medium.com/better-programming/learn-from-source-code-

an-effective-way-to-grow-for-beginners-e0979e9b5a84
[10] N. Funabiki, Y. Matsushima, T. Nakanishi, et al., “A Java

programming learning assistant system using test-driven

development method,” IAENG Int. J. Comput. Sci., vol. 40, no. 1,
pp. 38–46, Feb. 2013.

[11] S. N. Freund and E. S. Roberts, “Thetis: An ANSI C programming

environment designed for introductory use,” SIGCSE Bull., vol. 28,

no. 1, pp. 300–304, March 1996.

[12] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed

automated random testing,” in Proc. PLDI, June 2005, pp.

213–223.
[13] P. Vostinar, “Interactive course for JavaScript in LMS Moodle,” in

Proc. ICETA, 2019, pp. 810–815.

[14] P. Ihantola, T. Ahoniemi, V. Karavirta, et al., “Review of recent
systems for automatic assessment of programming assignments,” in

Proc. Koli Calling, Oct. 2010, pp. 86–93.

[15] S. M. Salleha, Z. Shukura, and H. M. Judi, “Analysis of research in
programming teaching tools: An initial review,” Procedia Soc.

Behavi. Sci., vol. 103, pp. 127–135, 2013.

[16] V. Dolgopolovas, T. Jevsikova, and V. Dagiene, “From Android
games to coding in C – An approach to motivate novice engineering

students to learn programming: A case study,” Comput. Appl. Eng.

Educ., vol. 26, pp. 75–90, 2018.
[17] S. Sobral, “CS1: C, Java or Python? Tips for a conscious choice,” in

Proc. Int. Conf. Edu. Res. Innov., Nov. 2019.

Copyright © 2023 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC

BY-NC-ND 4.0), which permits use, distribution and reproduction in any
medium, provided that the article is properly cited, the use is

non-commercial and no modifications or adaptations are made.

Annisa Anggun Puspitasari received the B.E.

degree in telecommunication engineering from

Politeknik Elektronika Negeri Surabaya
(PENS), Indonesia, in 2021. She is currently an

adjunct researcher at Okayama University,

Japan. Her research interests include
educational technology and wireless

communication systems.

Nobuo Funabiki received the B.S. and Ph.D.

degrees in mathematical engineering and

information physics from the University of

Tokyo, Japan, in 1984 and 1993, respectively.

He received the M.S. degree in electrical
engineering from Case Western Reserve

University, USA, in 1991. From 1984 to 1994,

he was with Sumitomo Metal Industries, Ltd.,
Japan. In 1994, he joined the Department of

Information and Computer Sciences at Osaka

University, Japan, as an assistant professor, and became an associate
professor in 1995. In 2001, he moved to the Department of

Communication Network Engineering at Okayama University as a

professor. His research interests include computer networks,
optimization algorithms, educational technology, and Web technology.

He is a member of IEEE, IEICE, and IPSJ.

Xiqin Lu received the B.S. degree in electronic

information engineering from Hubei

University of Economics, China, in 2017, and
received the M.S degree in electronic

information systems from Okayama University,

Japan, in 2021, respectively. She is currently a
Ph.D. student in Graduate School of Natural

Science and Technology, Okayama University,

Japan. She received the OU Fellowship in 2021.
Her research interests include educational

technology.

Huiyu Qi received the B.A. degree in

information management and information

system from Dalian University of Foreign
Languages, China, in 2021.She is currently a

master student in Graduate School of Natural

Science and Technology, Okayama University,
Japan. Her research interests include

educational technology.

International Journal of Learning and Teaching, Vol. 9, No. 1, March 2023

29

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Htoo Htoo Sandi Kyaw received the B.E. and

M.E. degrees in information science and

technology from University of Technology
(Yatanarpon Cyber City), Myamar, in 2015 and

2018, and Ph.D. in information communication

engineering from Okayama University, Japan,
in 2021, respectively. She is currently an

assistant professor in Division of Advanced

Information Technology and Computer
Science, Tokyo University of Agriculture and

Technology, Koganei, Japan. Her research interests include educational

technology and web application systems. She is a member of IEICE.

Kiyoshi Ueda received the B.E. and M.E.

degrees in electrical engineering from Keio

University, Japan, in 1987 and 1989,
respectively. He received the Ph.D. degree in

information science and electrical engineering

from Kyushu University, Japan, in 2010. He
was with NTT from 1989 to 2014, where he

studied digital switching software, especially

distributed switching node management
software. He is presently a professor at College

of Engineering, Nihon University from 2014. Prof. Ueda is a member of

IEEE, IEICE and IPSJ.

International Journal of Learning and Teaching, Vol. 9, No. 1, March 2023

30

