
Enhancing Inclusivity and Accessibility of
Python Programming Tutorials for Civil

Engineering Students
Yongmin Kim*, Samiran Das, and Jolly Atit Shah

School of Engineering, University of Glasgow, Singapore
Email: yongmin.kim@glasgow.ac.uk (Y.K.); samiran.das@glasgow.ac.uk (S.D.); jollyatit.shah@glasgow.ac.uk (J.A.S.)

*Corresponding author

Abstract—This study addresses the challenges and strategies
for enhancing the inclusivity and accessibility of Python
programming lectures for Civil Engineering (CVE) students
at a university in Singapore. Despite their strong
foundations in mathematics and physics, the diverse
backgrounds and varied coding experiences of CVE
students create barriers to effective learning in fast-paced,
interactive coding sessions. This paper critically reflects on
current teaching practices, analyzes student feedback, and
proposes an action plan based on Universal Design for
Learning principles and culturally responsive teaching
frameworks. Findings indicate that providing pre-tutorial
resources, multimodal teaching aids, and institutional
support enhances engagement, reduces disparities, and
improves inclusivity. Future iterations will include
comprehensive evaluations to refine these strategies further.

Keywords—inclusive learning, accessibility, Universal
Design for Learning (UDL), interactive lectures, civil
engineering

I. INTRODUCTION

The integration of programming skills in engineering
education has become increasingly critical, reflecting the
growing reliance on computational methods in
infrastructure projects. Python, in particular, offers
versatile applications in data analysis, automation, and
problem-solving—making it an indispensable skill for
Civil Engineering (CVE) students. The Civil Engineering
Skills module taught at a university in Singapore is
designed to equip students with these competencies,
enabling them to analyze and process engineering data
efficiently. However, the diverse backgrounds of CVE
students present challenges in delivering coding
education inclusively and effectively.

CVE students often possess strong foundations in
mathematics and physics, which support their logical
problem-solving abilities. However, not all students begin
the module with the same level of programming
experience. This disparity is compounded by cognitive
barriers such as learning disabilities, language proficiency

Manuscript received February 20, 2025; accepted June 3, 2025;
published September 18, 2025.

challenges, and differences in educational backgrounds.
Singapore’s multicultural environment adds another layer
of complexity, as students’ familiarity with English—the
medium of instruction—varies. As programming
education relies heavily on both technical and linguistic
comprehension, these factors can create significant
disparities in learning outcomes.

The module currently employs tutorial-based lectures,
a format praised for its interactivity and practical focus.
While this approach engages students through live coding
demonstrations and immediate feedback, it also demands
rapid comprehension and real-time problem-solving,
which can be overwhelming for some learners. Cognitive
overload, accessibility barriers, and a lack of flexibility in
learning styles have emerged as recurring issues in this
teaching context. These challenges highlight the need for
a more inclusive approach that accommodates diverse
learning needs and styles.

Inclusive education frameworks such as Universal
Design for Learning (UDL) provide valuable guidance
for addressing these challenges. By emphasizing multiple
means of representation, engagement, and expression,
UDL offers a proactive approach to designing learning
environments that cater to a wide range of abilities and
preferences. Additionally, culturally responsive teaching
practices recognize the importance of tailoring
educational content to reflect students’ diverse
experiences and cultural realities. This paper critically
examines the existing teaching practices in the Python
programming module, analyzes student feedback, and
proposes an action plan to enhance inclusivity and
accessibility. By combining theoretical insights with
practical strategies, this study aims to bridge the gaps in
current teaching practices and foster a more equitable
learning environment

Python programming is an essential skill for CVE
students, enabling them to analyze construction data and
automate processes effectively. The Civil Engineering
Skills module integrates Python coding with real-world
engineering applications. However, disparities in prior
coding experience, cognitive barriers, and cultural
diversity present challenges to achieving inclusivity and
accessibility in teaching. This paper explores these
challenges, reflects on current teaching practices, and

International Journal of Learning and Teaching, Vol. 11, No. 5, 2025

256doi: 10.18178/ijlt.11.5.256-261

proposes actionable strategies to enhance the learning
experience for all students.

II. METHODOLOGY

This study employs a mixed-methods approach to
evaluate the effectiveness of current teaching practices
and identify areas for improvement. Firstly, current
teaching practices were critically discussed based on
inclusion and accessibility from the perspective of higher
education. Second, data were collected through surveys
administered to 70 CVE students enrolled in the Python
programming module. The survey comprised both
quantitative and qualitative components, focusing on four
key areas: general experience (Table I), pacing and
cognitive load (Table II), content clarity and accessibility
(Table III), and inclusivity and support (Table IV).
Quantitative ratings were analyzed to identify trends,
while open-ended responses provided deeper insights into
students’ experiences and challenges (Table V).

The analysis is informed by relevant literature on
inclusive education, including Universal Design for
Learning [1], culturally responsive teaching [2], and the
intersection of cognitive and cultural barriers in
programming education [3, 4]. These frameworks guide
the development of an action plan aimed at addressing the
identified challenges.

TABLE I. STUDENT FEEDBACK ON GENERAL EXPERIENCE

No. Questions

1
How engaging did you find the live coding sessions? (Not
Engaging = 1, Extremely Engaging = 5)

2
How comfortable do you feel following along with the coding
demonstrations in real-time? (Very Uncomfortable = 1, Very
Comfortable = 5)

3
How well do you understand the concepts covered in the live
coding sessions? (Very Poorly = 1, Very Well = 5)

TABLE II. STUDENT FEEDBACK ON PACING AND COGNITIVE LOAD

No. Questions

4
Do you find the pace of the live coding sessions manageable?
(Never Manageable = 1, Always Manageable = 5)

5
Do you feel overwhelmed by the amount of information
presented during the sessions? (Always = 1, Never = 5)

6
Would you benefit from more pauses or breaks during the
sessions to process the information?

TABLE III. STUDENT FEEDBACK ON CONTENT CLARITY AND
ACCESSIBILITY

No. Questions

7
How clear are the explanations provided alongside the coding
demonstrations? (Very Unclear = 1, Very Clear = 5)

8
Do you have any difficulty understanding the programming
terminology used in the sessions? (High Difficulty = 1, No
Difficulty = 5)

9
Are the visual elements (e.g., code displayed on the screen)
easy to follow? (Very Difficulty = 1, Very Easy = 5)

TABLE IV. STUDENT FEEDBACK ON INCLUSIVITY AND SUPPORT

No. Questions

10
Do you feel that the sessions are inclusive and accessible for
all students, regardless of prior coding experience? (Very
exclusive = 1, Completely = 5)

11

Do you think additional resources (e.g., pre-tutorial materials,
video recordings) would help improve your learning
experience? (No, Not at all = 1, Yes, it would be very helpful
= 5)

TABLE V. OPEN ENDED QUESTIONS FOR STUDENT FEEDBACK

No. Questions

12
Please tick which learning activities would be most helpful
for improving your learning experience?

13 What do you like most about the live coding sessions?

14
What challenges do you face when following along with the
live coding sessions?

15
Are there any specific areas where you think the sessions
could be improved?

16
Do you have any suggestions for making the sessions more
inclusive or accessible for all students?

III. CRITICAL REFLECTION ON TEACHING PRACTICE

A. Disparity in Prior Coding Experience

Civil Engineering students enter the Python
programming module with diverse levels of coding
experience, a challenge highlighted by the initial survey
conducted at the beginning of the course. While many
students possess strong mathematical and logical
problem-solving abilities, their familiarity with
programming concepts varies significantly. This disparity
creates challenges in ensuring all students progress at the
same pace. Research by Bittermann et al. [5] emphasizes
how differences in prior knowledge can lead to unequal
learning outcomes, often leaving students with limited
programming backgrounds at a disadvantage.
Additionally, students with greater prior experience
demonstrate higher engagement and efficiency in
processing new information [6].

The tutorial-based, interactive format adopted for the
module assumes students can adapt quickly to new
programming concepts. While engaging for some, this
approach places students with limited experience under
significant strain. These learners often struggle to process
information and execute code at the same pace as their
peers, leading to frustration and reduced confidence. Such
discrepancies exacerbate learning inequalities and
disadvantage students who require a more methodical,
step-by-step approach. Shen et al. [7] advocate for
learning-by-doing methods, supported by interactive
computer tutors, as a way to address these disparities.
Immediate hands-on practice, combined with structured
guidance, has been shown to improve engagement and
comprehension, making it a crucial consideration for
educators.

B. Cognitive Overload and Pace of Learning

Interactive live coding sessions are designed to mimic
real-world problem-solving environments. However, the
fast-paced nature of these sessions can overwhelm
students, particularly those with learning disabilities,
attention challenges, or language barriers. Nieminen [4]
notes that teaching formats requiring simultaneous
processing of multiple streams of information—such as
verbal explanations, on-screen code demonstrations, and
real-time application—often disadvantage students who
require additional time for comprehension and provide
immediate feedback. Supported by Computer Science
Education Research [6, 8], this approach enhances
practical learning.

International Journal of Learning and Teaching, Vol. 11, No. 5, 2025

257

For many students, especially those unfamiliar with
coding, the combination of rapid concept delivery, code
troubleshooting, and error correction creates significant
cognitive strain. CVE students, despite their strong
foundations in mathematics and physics, often find
coding unfamiliar, resulting in delays as they attempt to
follow live demonstrations. Kioko and Makoelle [3]
emphasize that teaching practices failing to account for
varied processing speeds alienate certain learners,
ultimately hindering their educational experience.

C. Digital Accessibility Challenges

The reliance on visual and verbal elements in tutorial-
based lectures poses accessibility challenges, particularly
for students with visual impairments. Although the
current cohort does not include visually impaired learners,
the lack of assistive tools such as screen readers limits the
inclusivity of programming education. Hadwen-Bennett
[9] identifies multiple barriers faced by visually impaired
students, emphasizing the need for accessible
programming environments. Meulen et al. [10] further
argue that modern programming tools often exclude
visually impaired learners due to their incompatibility
with screen readers and other assistive technologies.

The absence of accessibility features in tutorial lectures
risks excluding a broader range of students, including
those with hidden disabilities or situational challenges.
While not immediately evident in the current cohort,
addressing these gaps proactively is essential to ensuring
long-term inclusivity.

D. Lack of Flexibility in Learning Styles

The synchronous, step-by-step nature of live coding
sessions assumes that all students learn effectively
through real-time demonstrations. However, this
approach does not align with the preferences of students
who require more time for reflection or prefer alternative
methods such as written materials or tutorials.
Comprehensive lecture materials were provided to
students in advance, but these resources often lacked the
interactivity necessary to engage learners during live
sessions.

Dolmage [11] critiques traditional instructional
methods for prioritizing the needs of a narrow range of
students while marginalizing others who benefit from
diverse teaching strategies. Without flexible teaching
modalities, students requiring additional time or different
forms of engagement may struggle to keep pace with
their peers. Addressing these limitations necessitates the
integration of multimodal instructional methods, such as
asynchronous tutorials, annotated guides, and self-paced
exercises, which cater to a broader spectrum of learning
styles.

IV. FEEDBACK AND ANALYSIS

A. Engagement and Comfort

The engagement score (3.94/5.00) indicates that most
students found the sessions engaging, with 70.8% rating
them as 4 or 5. However, 6.9% rated engagement as low

(2), highlighting a gap in addressing the needs of all
learners (Fig. 1). Engagement appeared to correlate with
prior coding experience; students with little or no prior
experience struggled to keep up, reducing their ability to
engage fully. This underscores the importance of
scaffolding through pre-session tutorials or introductory
materials to support diverse learners. Open-ended
responses revealed specific requests for scaffolding
materials, such as annotated code examples and video
demonstrations, to better prepare for sessions.

The comfort score (4.00/5.00) reveals that while 75.0%
of students felt comfortable following the live coding
demonstrations, 6.9% experienced discomfort. This
discomfort likely stemmed from the fast-paced delivery
and cognitive overload. Real-time coding demonstrations
require students to simultaneously process verbal
explanations, on-screen code, and application concepts,
which can be overwhelming for neurodiverse learners or
those unfamiliar with programming. Nieminen [4]
emphasizes the importance of reducing cognitive load to
create more inclusive learning environments.
Incorporating digital accessibility tools, such as annotated
codes and live captioning, could help alleviate these
challenges.

Fig. 1. Distribution of the attainment level for the student’s learning

experience on engagement and comfort.

B. Pacing and Cognitive Load

Fig. 2. Distribution of the attainment level for the student’s learning

experience on cognitive load.

The session pace received a neutral rating from 38.9%
of students, with 6.9% finding it rarely manageable (Fig.

International Journal of Learning and Teaching, Vol. 11, No. 5, 2025

258

2). Cognitive overload emerged as a recurring theme,
particularly among students with learning disabilities and
non-native English speakers. Live coding’s fast pace
often alienates students who need more time to process
information, troubleshoot errors, and grasp new concepts.
Harrington et al. [2] argue that teaching practices must
accommodate varying processing speeds to ensure
inclusivity.

C. Clarity and Accessibility

The clarity score (3.85/5.00) suggests that
misunderstandings during live sessions hinder confidence
and participation. Notably, 25.0% of students rated the
explanations as neutral or unclear. Terminology posed a
significant barrier, with 40.3% of students indicating
moderate difficulty in understanding programming jargon
(Fig. 3). This highlights the need for clearer instructional
methods and supplementary resources.

Proposed Interventions: Multimodal teaching aids,
such as diagrams, flowcharts, and annotated materials,
can enhance comprehension. Asynchronous resources,
including video demonstrations and written guides, allow
students to review and practice at their own pace. These
resources address the learning gaps for students who
struggle during live sessions.

Fig. 3. Distribution of the attainment level for the student’s learning
experience on clarity and accessibility.

D. Inclusivity and Support

Fig. 4. Distribution of the attainment level for the student’s learning

experience on inclusivity and support.

The inclusivity score (3.81/5.00) reflects mixed
perceptions of the sessions’ accessibility (Fig. 4).

Qualitative feedback emphasized the importance of
culturally responsive examples and case studies.
Singapore’s multicultural context necessitates teaching
practices that acknowledge and value students’ diverse
experiences.

Proposed Interventions: Incorporating case studies
relevant to different cultural and engineering contexts can
enhance engagement and inclusivity. Institutional support
for digital accessibility features, such as screen readers, is
essential to address hidden or situational challenges.

V. ACTION FOR ENHANCING LEARNING EXPERIENCE

The survey results (Fig. 5) provide significant insights
into students’ preferences for learning activities that
enhance their experience in Python programming
tutorials. These findings underscore the importance of
designing inclusive, accessible, and flexible learning
environments, particularly for Civil Engineering students
with diverse backgrounds and varying levels of prior
coding experience. This section critically analyzes the
results in the context of existing literature, highlighting
their implications for teaching practices and future
research. By integrating UDL principles, culturally
responsive teaching, and flexible modalities, the plan
seeks to create a more equitable learning environment.
However, further testing and iteration are necessary to
evaluate the effectiveness of these strategies in a live
coding context.

Fig. 5. Preferred learning activities for enhancing the student’s learning

experience.

A. Annotated Codes and Written Instructions: Bridging
Knowledge Gaps

The overwhelming preference for annotated codes and
written instructions (53 votes each) underscores their
critical role in fostering inclusivity and comprehension.
These resources provide scaffolding for students who
may struggle to follow fast-paced, live coding
demonstrations, as supported by Universal Design for
Learning (UDL) principles [1]. Annotated codes act as a
roadmap, demystifying the thought processes behind
coding decisions, while written instructions offer an
opportunity for students to revisit content at their own
pace.

This finding aligns with Bittermann et al.’s [5]
discussion on addressing disparities in prior knowledge,
where providing clear, accessible materials can help level
the playing field for students with varying experience
levels. Additionally, these resources are particularly
beneficial for non-native English speakers who may face
language barriers in comprehending technical jargon [12].
Future iterations of the module should prioritize the

International Journal of Learning and Teaching, Vol. 11, No. 5, 2025

259

development of comprehensive annotated codes and
detailed written guides to support diverse learners
effectively.

B. Pre-recorded Bite-Sized Videos: Flexibility and
Accessibility

The preference for pre-recorded bite-sized videos (41
votes) reflects a growing demand for self-paced learning
tools that offer flexibility. These videos allow students to
control the pace of their learning, pausing, rewinding, and
revisiting content as needed. This aligns with Shen et
al.’s [7] emphasis on “learning by doing”, where
immediate application and practice are essential for
mastering programming skills.

Moreover, bite-sized videos reduce cognitive overload
by breaking down complex topics into manageable
segments, a strategy supported by Nieminen’s [4]
recommendations for minimizing cognitive load in
technical education. To maximize their effectiveness,
these videos should include captions, transcripts, and
visually engaging content to cater to a broad range of
learning styles and abilities.

C. Digital Learning Materials: Beyond the Classroom

The preference for digital learning materials, such as
YouTube videos (29 votes), highlights the value of
external resources in complementing formal instruction.
Platforms like YouTube provide diverse, community-
driven content that can address specific topics in
engaging and innovative ways. This aligns with findings
from Kioko and Makoelle [3], who emphasize the
importance of leveraging external resources to enhance
inclusivity.

However, relying solely on external content may not
fully align with course objectives or address the unique
needs of the student cohort. To bridge this gap, educators
should curate a list of high-quality digital resources that
align with the curriculum and integrate them into the
learning experience. This approach ensures consistency
and relevance while providing students with additional
avenues for exploration and practice.

D. More Tutorials: Hands-on Practice and
Collaborative Learning

The demand for more tutorials (28 votes) emphasizes
the importance of hands-on practice and real-time
feedback in mastering programming skills. Tutorials
foster active learning, allowing students to apply concepts
in a supportive environment where they can seek
clarification and collaborate with peers. This preference
aligns with Dolmage’s [11] critique of traditional
teaching methods, which often overlook the need for
diverse engagement strategies.

Expanding tutorial sessions or incorporating small-
group discussions and project-based assessments can
address this need. These approaches not only enhance
understanding but also build a sense of community
among students, particularly in a multicultural setting like
Singapore.

VI. CONCLUSION

The survey results underscore the importance of
adopting inclusive, accessible, and flexible teaching
practices to meet the diverse needs of Civil Engineering
students in Python programming tutorials. By leveraging
annotated codes, written instructions, pre-recorded videos,
and expanded tutorials, educators can create a more
equitable and effective learning environment. These
strategies not only address current challenges but also lay
the foundation for continuous improvement and
innovation in programming education.

While the survey provides valuable insights, further
research is needed to evaluate the effectiveness of these
proposed strategies in practice. Longitudinal studies
tracking student performance and engagement before and
after implementing these changes could provide empirical
evidence of their impact. Additionally, qualitative
methods such as focus groups and interviews could offer
deeper insights into students’ experiences and preferences,
particularly for underrepresented groups such as non-
native English speakers and students with disabilities.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

YK and SD designed this research framework; YK and
JAS wrote the paper and analyzed the data; YK reviewed
and edited the paper; all authors had approved the final
version.

REFERENCES

[1] S. Baglieri, “Toward inclusive education? Focusing a critical lens
on universal design for learning,” Canadian Journal of Disability
Studies, vol. 9, no. 5, pp. 42–74, 2020.

[2] C. N. Harrington, A. Desai, A. Lewis, S. Moharana, A. A. Ross,
and J. Mankoff, “Working at the intersection of race, disability
and accessibility,” in Proc. the 25th International ACM
SIGACCESS Conference on Computers and Accessibility, New
York, 2023, pp. 1–18.

[3] V. K. Kioko and T. M. Makoelle, “Inclusion in higher education:
Learning experiences of disabled students at Winchester
University,” International Education Studies, vol. 7, no. 6, pp.
106–116, 2014.

[4] J. H. Nieminen, “Assessment for inclusion: Rethinking inclusive
assessment in higher education,” Teaching in Higher Education,
vol. 29, no. 4, pp. 841–859, 2024.

[5] A. Bittermann, D. McNamara, B. A. Simonsmeier, and M.
Schneider, “The landscape of research on prior knowledge and
learning: A bibliometric analysis,” Educational Psychology
Review, vol. 35, no. 2, p. 58, 2023.

[6] T. Dong and G. Yang, “Towards a pattern language for interactive
coding tutorials,” in Companion Proceedings of the 4th
International Conference on Art, Science, and Engineering of
Programming, Porto, 2020, pp. 102–105.

[7] R. Shen, D. Y. Wohn, and M. J. Lee, “Comparison of learning
programming between interactive computer tutors and human
teachers,” in Proc. the ACM Conference on Global Computing
Education, Hyderabad, 2019, pp. 2–8.

[8] M. Seyam, D. S. McCrickard, S. Niu, A. Esakia, and W. Kim,
“Teaching mobile application development through lectures,
interactive tutorials, and Pair Programming,” in Proc. 2016 IEEE
Frontiers in Education Conference (FIE), Erie, 2016, pp. 1–9.

International Journal of Learning and Teaching, Vol. 11, No. 5, 2025

260

[9] A. Hadwen-Bennett, S. Sentance, and C. Morrison, “Making
programming accessible to learners with visual impairments: A
literature review,” International Journal of Computer Science
Education in Schools, vol. 2, no. 2, pp. 3–13, 2018.

[10] A. V. der Meulen, M. Hartendorp, W. Voorn, and F. Hermans,
“The perception of teachers on usability and accessibility of
programming materials for children with visual impairments,”
ACM Transactions on Computing Education, vol. 23, no. 1, pp. 1–
21, 2022.

[11] J. T. Dolmage, Academic Ableism: Disability and Higher
Education, University of Michigan Press, 2017, p. 244.

[12] P. J. Guo, “Non-native English speakers learning computer
programming: Barriers, desires, and design opportunities,” in Proc.
the 2018 CHI Conference on Human Factors in Computing
Systems, Montreal, 2018, pp. 1–14.

Copyright © 2025 by the authors. This is an open access article
distributed under the Creative Commons Attribution License which
permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited (CC BY 4.0).

International Journal of Learning and Teaching, Vol. 11, No. 5, 2025

261

https://creativecommons.org/licenses/by/4.0/

